Research

Find out more about our research including published papers, our partnerships with academia and opportunities for interns or placements.

At Caspian, we invest heavily in both internal and external research to further support the development of our AI technology solutions and the advanced data science that underpins those solutions.

This includes published papers, relationships with research organisations, knowledge transfer partnerships and opportunities for internships and studentships.

Published Papers

Research, white papers and case studies originated by Caspian or in collaboration with partners.

How expert AML investigators make risk decisions

What if your financial crime experts, instead of just training investigators, could also train system technology itself to do what the best investigators do when presented with an investigation? Our whitepaper in collaboration with Nasdaq shares previously unreleased research into the performance of risk investigation experts, how they make decisions and the process behind capturing a gold standard decision graph of such investigations.

Transforming quality and consistency in financial crime investigation

Balancing consistency and quality of investigation performance with operational efficiency is an ongoing challenge for financial services organisations.

This paper explores how decision graph technology captures the analysis and decisioning traits of expert risk analysts to automate and augment investigations and deliver QA fail rate improvements of up to 80%.

Trusting Machine Learning in AML

Wherever machine learning is used in AML, there will be a model, and that model will carry risks that must be managed.

This paper provides a comprehensive list of risks and mitigations that should be considered when managing model risk management.

Automate AML investigations with AI

A global Tier 1 Bank deployed automated AML technology as part of a focus on improving effectiveness and efficiency in the operation of their transaction-monitoring program. Read our case study produced in collaboration with Nasdaq to understand how the solution performed and the outcomes delivered.

AML in a Covid-19 World

We shine a light on the monitoring of money laundering during the COVID-19 pandemic and highlight the key issues that investigation teams in tier-one banks need to consider.

AML signature analysis

How AI automatically locates, extracts and classifies signatures on documents from companies house using the name of the company to inform risk in an AML case investigation.

Bayesian stress testing of machine learning models

Selected to appear in the proceedings of the International Joint Conference of Neural Networks (IJCNN) 2020, part of the World Congress on Computational Intelligence (WCCI). The paper presents a Bayesian framework to stress test machine learning solutions with a framework generic and agnostic to the modelling methods used.

Deep learning improves probabilistic modelling

In collaboration with Durham University’s Dr Noura Al Moubayed and published in the journal PeerJ Computer Science, this research is part of Caspian initiatives focused on natural language processing. The paper presents an approach and framework that demonstrates how deep learning can improve the discriminability of probabilistic topic modelling.

Finding the Ground-Truth from Multiple Labellers

Employing multiple workers to label data for machine learning models has become increasingly important in recent years. Huge volumes of labelled data are needed to train complex models whilst mitigating the risk of incorrect and noisy labelling. This paper presents why parameters of the task matter and provides guidance as to what parameters methods work best while the experimental framework provides a way of testing other established and new methods.


Knowledge Transfer Partnership

Knowledge Transfer Partnerships (KTP) provide us with opportunities to work with world leading academic teams and access advanced research that feeds into the further development of our automated investigation technology.

Knowledge Transfer Partnership with Durham University

We currently have a partnership in place with Durham University, one of the world’s leading research led universities, ranked 78th in the QS world rankings. We are working with the university’s Department of Computer Science (which itself is ranked 5th in the UK’s Complete University Guide) and are supported by Dr Noura Al-Moubayed, the academic project lead and Assistant Professor at Durham University specialising in Machine Learning and Natural Language Processing.

The collaboration with Durham university provides the Caspian team with access to discipline specific expertise that supports our work to continuously evolve and remain at the forefront of innovation in AI driven automated Anti-Money Laundering technology. The real-life financial crime problems we solve have wide reaching consequences both in a social and economic sense. The project focuses on automating the natural language explanations that our machine learning solutions output to help investigation teams in tier one banks become more effective and efficient.


PhD Studentship

As part of the Durham University Intensive Industrial Innovation Programme, Caspian have a PhD studentship in place that is fully funded by the European Regional Development Fund and is supported in their research by the data science team at Caspian.

The programme is designed to encourage innovation by supporting businesses (particularly in science and engineering) with a dedicated PhD research student for three years, as well as providing access to senior academic researchers and university research facilities.

With a focus on recent advances in deep learning, causal inference and natural language processing, the PhD provides the Caspian team with a way to think strategically and differently about about research objectives whilst having a material impact on our next generation of explainable machine learning technology.


Academic internships and placements

We regularly create opportunities for university students to take up short term internships and full year placements at Caspian.

Working with leading universities, these programmes give students of computer science and mathematics, a real-world opportunity to supplement their learning through participating in specific projects and shadowing the day-to-day operations of the Caspian data science team.

This provides extensive opportunity to test new ideas through proof-of-concept projects with the students which investigate and validate the potential of new developments to be worked into technologies within Caspian technology.


Enquiries and further resources

To enquire about research collaboration or partnership opportunities with Caspian, please contact us.

Our Resources page is also great way to follow updates from the Caspian team and includes our blog, news and events covering subjects from Data Science and AI to Financial Crime and Regulation.